
Food for Thought: How Do You Build a Better Recipe

Recommender?

1 Dataset

For our assignment, we used two

datasets: RAW_recipes.csv and

RAW_interactions.csv, both of which were

collected from Food.com by the research

team led by Majumder et al. For further

details on Majumder et al.'s research

project and their data usage, please refer

to the Literature Review section 4.

1.1 User Interaction Dataset

The user-recipe interaction dataset from

RAW_interactions.csv contains 1,132,367

reviews spanning an 18-year period

(2000–2018). This dataset covers a total of

231,637 unique recipes and includes

interactions from 226,570 distinct users.

Each data entry consists of: user_id,

recipe_id, date, rating, and review (refer

to Table 1 below).

Figure 1 illustrates the distribution of

reviews per user. It shows that 73.38% of

users in the dataset contributed only a

single review, while 5.05% of users made

more than 10 reviews. This highlights an

important characteristic of the dataset:

despite having a user-item history, we

have relatively limited information about

individual users, which could impact the

performance of certain models.

Figure 1:

In addition, our Figure 2 illustrates our

analysis of the distribution of all reviews

per year (dark blue bar), all unique

reviews per year (unique - none share a

recipe they correspond to)(light blue bar),

and all unique reviews that were their

recipe’s first received review within the

18-year data span (yellow bar). Figure 2

illustrates that after around 2010, there

was a noticeable decline in the number of

first reviews for recipes. However, 2015

stands as an exception, as almost all

reviews that year were for recipes that

had never been reviewed before then.

Figure 2:

Most reviews received a rating of 5, as

shown in Figure 3. However, there was a

general decline in the average rating for

recipes starting around 2008. As shown in

Figure 4, while the average ratings have

remained consistently above a rating of 4

each year, there has been a gradual

decrease beginning in 2011, with the most

significant drop occurring in 2017. By

2018, there was no drastic recovery in

average ratings. This decline is likely

attributed to the reduction in the overall

number of reviews after 2011, meaning

the average rating is increasingly based

on a smaller and potentially less varied

sample of data each year.

Figure 3:

Figure 4:

Before starting to create a model, we

wanted to gain an overview of the

“positive” reviews and the “negative”

reviews. We did this by creating 2 sets of

word clouds. The first approach

categorized reviews as positive or

negative based on the rating (3 or higher

for positive, and 2 or lower for negative).

The second approach for categorizing

positive vs negative reviews was based on

the actual content of the review itself,

using sentiment analysis. For this, we

applied TextBlob to calculate the

sentiment polarity of each review, which

assigns a score to the text indicating

whether the sentiment is positive,

negative, or neutral. Based on the polarity

score, we classified the reviews as positive

(if the score was greater than 0), negative

(if the score was less than 0), or neutral (if

the score was exactly 0). This allowed us

to classify the reviews independently of

their ratings. Unfortunately, neither set of

word clouds (Figure 5 and 6) provided a

deeper insight into the reviews.

Figure 5:

Figure 6:

1.2 Recipe Dataset

The recipe dataset from RAW_recipes.csv

contains 231,637 data entries spanning a

19-year period (1999 – 2018) from 27,926

distinct users.

Each data entry included the following

columns: name, id, minutes,

contributor_id, submitted, tags, nutrition,

n_steps, steps, description, ingredients,

and n_ingredients. For a list of column

descriptions please refer to Table 2 below.

Most recipe entries have an average of 8

ingredients, with the maximum number of

ingredients recorded at 20 (Figure 7). The

wide range of ingredient counts suggests a

mix of simple and more intricate recipes.

Figure 7:

Figure 8:

The “tags” column had 209,115 unique

tags. Figure 8, shows the top 20 tags

across the recipe dataset. We then

performed a brief thematic analysis and

placed the top 20 tags in the following

categories: Time-related, Course, Dietary,

Cuisine-related, Difficulty/Convenience,

and Occasion-related. A breakdown of

these categories can be found in Table 3

below.

2 Predictive Task

The task we have selected for our

assignment is to predict the rating that a

user will give for a recipe, on a scale of

zero to five.

2.1 Features

To properly predict how any given user

would rate a recipe, a series of features

has been extracted and created from the

given dataset; namely the user_id,

recipe_id, and rating fields. To properly

use these features to train and evaluate

our model, we performed a simple

80%/10%/10% split for our

train/validation/test datasets and utilized

them for both our baseline models and our

main models.

2.2 Evaluation Methodology

To properly evaluate how well our model’s

predictions perform compared to their

respective true rating, we will calculate

the Mean Squared Error (MSE), which is

defined below:

𝑀𝑆𝐸 = 1
𝑛

𝑖

𝑛

∑ (𝑌
𝑖

− 𝑌
𝑖
)

2

where is the true rating value and is𝑌
𝑖

𝑌
𝑖

the estimated rating value.

Our exploratory data analysis showed

that both the average rating users give

and the average rating a recipe receives

give a reasonable approximation for

predicting future rating values. Based on

this fact, we defined three simple baseline

models to get a sense of the room for

further improvement.

2.3 Baselines

User-Average Model

The user-average model predicts ratings

based on the user's past behavior. It first

checks if the user has a history of

providing ratings by looking up the user

in the dictionary of user averages

previously constructed. If the user is

found, it returns the average rating that

this user typically gives to items. This

approach assumes that users tend to be

consistent in their ratings, so their

average rating can be a good predictor of

their future behavior. However, if the user

is new or unknown (i.e., not found in the

user dictionary), the model defaults to

using the global average, which is the

average rating across all users and all

items. This fallback ensures that the

model can still make a reasonable

prediction even when there is no specific

data about the user.

Item-Average Model

The item-average model works similarly

but focuses on the item instead of the

user. It looks at the average rating for the

specific recipe or item being predicted. If

the item has been rated by users before,

the model returns the average rating for

that item, assuming that its average

rating reflects its overall quality.

However, if the item is unknown or hasn’t

been rated before, the model defaults to

the global average. This method is useful

when items have distinct patterns of

ratings but can be less effective if there

isn’t enough information on a particular

item.

Jaccard Similarity Model

The Jaccard Similarity model takes a

more nuanced approach by incorporating

the idea of similarity between items,

using a metric called the Jaccard

similarity. The formula is given as follows:

𝑟(𝑢, 𝑖) = 𝑅
𝑖

+
Σ

𝑗∈𝐼
𝑢

(𝑅
𝑢,𝑗

−𝑅
𝑗
)·𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑖, 𝑗)

Σ
𝑗∈𝐼

𝑢

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑖, 𝑗)

This model first looks at other items that

the user has rated and calculates how

similar those items are to the item in

question based on the overlap of users

who rated both items. The ratings of these

similar items are adjusted (weighted) by

their similarity to the target item. If the

weighted sum of these ratings can be

computed, the model predicts the rating

based on this information. However, if the

user hasn’t rated any similar items (i.e.,

there’s no overlap in users who rated both

items), the model defaults to the global

average. This method allows for more

personalized predictions by factoring in

how similar the user's previous items are

to the new ones.

2.4 Performance Evaluation

Model MSE

User-Average 1.3087376

Item-Average 1.4270654

Jaccard Similarity 1.4209063

After evaluating our baseline models, we

found the MSE values for each baseline

model to be well over 1.3. To see if we

could further improve the accuracy of our

prediction, we developed and evaluated a

User/Item Average Hybrid Model, a

Latent Factor Model, and a Neural

Network-based Model, which we explore

in the next section.

3 Model

User/Item Average Hybrid Model

The very first approach we tried was

combining the user rating average and

recipe rating average with weight factors.

Through a hyperparameter tuning process

of weight values, we achieved an MSE

value of 1.29767. Although the result was

an improvement from the baseline

models, it was quite insignificant, so we

delved further into more complex models.

Latent Factor Model

Each user-recipe interaction is

represented with (1) global bias; (2) user

bias; (3) item bias; (4) latent factors for

item and user.

Justification

The Latent Factor Model is simplistic and

effective, particularly with sparse data

that only contains user-recipe

interactions. The Latent Factor Model

performs well without requiring us to

parse and provide explicit features from

raw data files which can be quite

challenging. It is great at personalizing

predictions by learning patterns solely

from user-recipe interactions, using latent

factors to capture preferences and

characteristics. Additionally, our

familiarity with the Latent Factor Model

from class made it a natural choice. We

have seen that this method performs well

on the type of problem we are solving.

Optimization

The optimization is performed using the

L-BFGS-B algorithm, which minimizes

the loss function:

𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠) +
𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚𝑠

We have added regularization terms for

user and item biases and latent factors to

prevent the model from overfitting and

ensure decent generalization to unseen

data.

Then we performed a grid search to find

the combination of regularization terms

that would decrease the validation error

of our model.

Issues:

We have run into issues with the train,

validation and test sets that were already

provided with the data set. These sets

were organized in a way that the newest

user review would go into test, second

newest to validation, and the rest of the

reviews under that user - to training[1].

We learned from the data analysis that

the majority of users only have 1 review.

This means that there isn’t a lot of

overlap between the training set and

validation or test sets. This led to the

model defaulting to a certain baseline,

that would predict the same rating no

matter how we changed the parameters.

This resulted in an MSE of 1.92. We

managed to solve this issue by reshuffling

the given datasets and performing our

own splitting. This introduced overlap

which made the model perform a lot

better, achieving an MSE of 0.90. This

reshuffling approach was also useful for

us when experimenting with other

models, including the Neural Network

Model.

In addition to this, after we tuned the

parameters, we wanted to find paths to

further improve our model. We started to

think of ways how we could use extra

features from raw data to our advantage.

We reviewed the paper "Improving Latent

Factor Models via Personalized Feature

Projection for One-Class

Recommendation" [9], which discusses an

approach to expand traditional latent

factor models by incorporating

user-specific personalized projection

matrices for item features, rather than

using generalized latent factors. This

approach appeared promising, as it would

allow us to model more complex,

user-specific relationships with the item

features. However, due to time constraints

and the challenges involved, we decided to

explore other models that would allow us

to use raw data features.

Neural Network Model

The final approach we attempted is a

neural network that takes in various

features as inputs and predicts a single

rating as output. In total, we attempted

two different models, one with some basic

features, and another with more advanced

features. The architecture for both models

is similar. Model 1 has an input layer, a

dense layer with 128 neurons with relu

activation and 0.5 dropouts, a dense layer

with 64 neurons with relu activation and

0.5 dropouts, and finally a single output

layer. Model 2 uses the same architecture

but with an extra 64 neuron Dense layer.

We wanted to try using a neural network

to better capture some of the more

complex relationships between the

features that we have to work with.

The following is a description of the

features that we used:

Number of Steps (Both Model 1 and 2)

We took the similarity between the

number of steps that the user prefers (this

is the average # of steps in ratings the

user rated 4 or higher in the training

data) and the number of steps in the

recipe as a feature.

We used the normalized similarity

measure below:

Number of Ingredients (1 and 2)

We used the same method as above to use

the similarity in the number of

ingredients in user preferences and the

recipe.

Jaccard Similarity (1 only)

We used the maximum of the Jaccard

similarities between recipes that the user

has rated and the recipes that the users of

the target recipes have rated as a factor.

Technique Vector (1 and 2)

One part of the dataset is a list of

techniques found within recipes. We use

the normalized version of the vector that

represents the techniques the user has

encountered.

Calorie Level (2 only)

We use the normalized calorie level of the

recipe as a feature.

Ingredients Jaccard (2 only)

We take the Jaccard similarity of the

ingredients in the recipe and the set of

preferred ingredients of the user (set of all

ingredients in recipes the user rated 4 or

higher) as a feature.

Ingredients TFIDF (2 only)

We run the following TFIDF function on

the list of ingredients that the user

prefers, and use the TFIDF of that

ingredient as a feature:

Evaluation Results

The first model yielded an MSE of 0.88.

The second model yielded an MSE of 0.79.

These results, while good, are not a

significant improvement over previous

methods, in particular compared to the

LFM. This combined with the low

improvement in loss after each epoch

suggests that, at least for the features

that we used, creating a full-fledged

neural network may not be an efficient

use of computation power for this task.

The two main challenges of using neural

networks were dealing with the

computational requirement and selecting

effective features. My laptop couldn’t

handle training a neural network locally,

so I had to import my code onto Kaggle

and use their GPU resources.

The long runtime it takes to generate the

features and train the network meant

that it was difficult to tune

hyperparameters and experiment with

features and model architectures.

Selecting the correct features to maximize

performance was also a challenge, as

some features that intuitively seemed like

they would be good were a detriment. For

example, the Jaccard similarity didn’t

improve the model that much after

experimentation, and was scrapped in the

second model. Also, a version of the

technique vector that took into account

which techniques the recipe had increased

the loss, so the simpler version that only

included user techniques was used.

4 Literature Review

Between 2006 and 2023, 70 research

papers have focused on food

recommendation systems. The main

objectives of these studies include

improving users' health by providing

nutritional information, enhancing the

quality of datasets and recommender

system research, and generating

personalized recommendations based on

factors such as preferred cuisine,

ingredients, and available cooking time

due to users' careers [7].

In food recommendation systems, the

three most common filtering techniques

are Content-Based Filtering (CBF),

Hybrid Filtering (HF), and Collaborative

Filtering (CF) [7].

Recent methods for personalizing

food-related data often use an

encoder-decoder framework, where data is

tokenized to allow the machine to process

and expand it. Aspect-aware learning is

then employed to extract latent

representations from users' past reviews,

such as preferred cooking methods, food

types, or motivations for trying a recipe.

This enables the model to infer user

preferences. The attention fusion layer

further highlights specific review details,

such as cooking techniques, that are

crucial for generating personalized

recommendations. [1][2]

Other approaches leverage neural

networks to learn latent representations

of user preferences and item features

[3][4][5]. Some methods have also

combined Collaborative Filtering with

Generative Concatenative Networks [6].

4.1 Context of Dataset Used

We used the dataset collected by

Majumder et al. from Food.com. For more

details on the dataset's properties, please

refer to Section 1, "Exploratory Analysis."

In their study, Majumder et al. developed

a model to generate personalized recipes

based on a dish name, the desired calorie

level, and a partial list of ingredients.

This approach is more realistic, as users

often only know a few core ingredients.

The personalized framework also

incorporates the user's most recent recipe

interactions (reviews) and preferred

cooking techniques, such as boiling,

grilling, baking, or mixing. The model’s

goal is to generate a coherent,

personalized recipe.

This approach differs from previous

studies, which typically provide models

with a full list of ingredients and the dish

name, without any personalized

framework. In contrast, prior recipe

generation models are evaluated based on

how well they use the full ingredient list

and the coherence of the generated recipe.

While Majumder et al.'s study also

evaluates coherence, they take it a step

further by assessing whether the

personalized framework enhances the

"semantic plausibility"—the believability

and accuracy—of the generated recipes.

4.2 Food Datasets in Prior Studies

According to the literature review by

Mahajan et al., of the 70 papers reviewed,

20 used datasets that are not publicly

available due to privacy concerns or terms

of service restrictions. As a result,

researchers often have to collect their own

food review datasets [7]. This is evident in

our case, as the dataset we used was

manually collected by Majumder et al.'s

research team.

The 2024 paper, “An interactive food

recommendation system using

reinforcement learning” [8] also utilized a

dataset from Food.com, which they

discovered via the publicly available

Kaggle site. This is the same platform we

found the dataset we are working with.

5 Conclusions

In conclusion, in this report we explored

two datasets from Food.com, focusing on

user-recipe interactions and recipe

details. Through an extensive exploratory

data analysis, we uncovered key

characteristics of user behavior and recipe

features, such as the predominance of

single-review users and the decline in new

recipe reviews after 2010. Our predictive

task involved building and evaluating

several models to predict user ratings of

recipes, starting with baseline models like

user-average, item-average, and Jaccard

similarity-based predictions. These

baseline models provided foundational

insights but left room for improvement, as

indicated by their Mean Squared Error

(MSE) scores.

To improve accuracy, we developed more

sophisticated models, including a

User/Item Average Hybrid Model, a

Latent Factor Model (LFM), and a Neural

Network-based model.

The LFM, with an MSE of 0.90, effectively

modeled sparse data using global, user,

and item biases alongside latent factors,

revealing user preferences and recipe

characteristics without extensive feature

engineering. Regularization ensured

generalization and avoided overfitting.

The Neural Network, leveraging complex

features like steps, ingredient similarities,

and calorie levels, achieved the best MSE

of 0.79 but showed marginal improvement

over the LFM. High computational costs

and limited gains suggest neural

networks may not be optimal for this task.

While the LFM offered simplicity and

interpretability, the neural network’s

non-linear features made its outputs less

transparent, emphasizing the importance

of feature selection, efficiency in model

design and the challenges of incorporating

complex features into food

recommendation systems

Our review of related literature revealed

similar findings in other studies,

particularly in the growing use of neural

networks and collaborative filtering for

personalized food recommendations.

These findings affirm the broader

research trends, emphasizing the

importance of leveraging user preferences

and recipe characteristics to enhance

recommendation accuracy. Overall, our

analysis demonstrated the strengths and

limitations of various approaches to food

recommendation tasks, paving the way for

future advancements in personalized

recipe generation and recommendation

systems.

6 References

[1] Majumder, Bodhisattwa Prasad, et al.

"Generating personalized recipes from

historical user preferences." arXiv preprint

arXiv:1909.00105 (2019).

[2] Ni, Jianmo, and Julian McAuley.

"Personalized review generation by

expanding phrases and attending on

aspect-aware representations." Proceedings

of the 56th Annual Meeting of the

Association for Computational Linguistics

(Volume 2: Short Papers). 2018.

[3] Wu, Chao-Yuan, et al. "Joint training of

ratings and reviews with recurrent

recommender networks." (2017).

[4] Catherine, Rose, and William Cohen.

"Transnets: Learning to transform for

recommendation." Proceedings of the

eleventh ACM conference on recommender

systems. 2017.

[5] Li, Piji, et al. "Neural rating regression

with abstractive tips generation for

recommendation." Proceedings of the 40th

International ACM SIGIR conference on

Research and Development in Information

Retrieval. 2017.

[6] Lipton, Zachary C., Sharad Vikram, and

Julian McAuley. "Capturing meaning in

product reviews with character-level

generative text models." arXiv preprint

arXiv:1511.03683 (2015).

[7] Mahajan, Pratibha, and Pankaj Deep

Kaur. "A Systematic Literature Review of

Food Recommender Systems." SN Computer

Science 5.1 (2024): 174.

[8] Liu, Liangliang, et al. "An interactive

food recommendation system using

reinforcement learning." Expert Systems

with Applications (2024): 124313.

[9] Zhao, Tong, Julian McAuley, and Irwin

King. "Improving latent factor models via

personalized feature projection for one class

recommendation." Proceedings of the 24th

ACM international on conference on

information and knowledge management.

2015.

