Food for Thought: How Do You Build a Better Recipe

Recommender?

1 Dataset

For our assignment, we used two
datasets: RAW_recipes.csv and

RAW _interactions.csv, both of which were
collected from Food.com by the research
team led by Majumder et al. For further
details on Majumder et al.'s research
project and their data usage, please refer
to the Literature Review section 4.

1.1 User Interaction Dataset

The user-recipe interaction dataset from
RAW _interactions.csv contains 1,132,367
reviews spanning an 18-year period
(2000—-2018). This dataset covers a total of
231,637 unique recipes and includes
interactions from 226,570 distinct users.
Each data entry consists of: user._id,
recipe_id, date, rating, and review (refer
to Table 1 below).

User Interactions Dataset

Column Name Description

user_id Unique id of user

recipe_id Unique id of recipe

date Date of review (YYYY-MM-DD)
rating Recipe rating (scale: 0 to 5)
review Text of recipe review

Total Reviews: 1,132,367
Years of data collection : 2000 - 2018

Figure 1 illustrates the distribution of
reviews per user. It shows that 73.38% of
users in the dataset contributed only a
single review, while 5.05% of users made
more than 10 reviews. This highlights an
important characteristic of the dataset:
despite having a user-item history, we
have relatively limited information about
individual users, which could impact the
performance of certain models.

Figure 1:

1 Review
2 Reviews
3 to 10 Reviews

More than 10 Reviews

More than 10 Reviews

5.05%

3 to 10 Reviews
1 Review B 11.53%

10.04%

2 Reviews

In addition, our Figure 2 illustrates our
analysis of the distribution of all reviews
per year (dark blue bar), all unique
reviews per year (unique - none share a
recipe they correspond to)(light blue bar),
and all unique reviews that were their
recipe’s first received review within the
18-year data span (yellow bar). Figure 2
illustrates that after around 2010, there
was a noticeable decline in the number of
first reviews for recipes. However, 2015
stands as an exception, as almost all
reviews that year were for recipes that
had never been reviewed before then.

Figure 2:

160000

5 140000
H

H

g

3 120000
&

I}

£ 100000
g

&

S 80000 I

60000

40000 . I

20000

Total Number of

0 -

Most reviews received a rating of 5, as
shown in Figure 3. However, there was a
general decline in the average rating for
recipes starting around 2008. As shown in

Figure 4, while the average ratings have
remained consistently above a rating of 4
each year, there has been a gradual
decrease beginning in 2011, with the most
significant drop occurring in 2017. By
2018, there was no drastic recovery in
average ratings. This decline is likely
attributed to the reduction in the overall
number of reviews after 2011, meaning
the average rating is increasingly based
on a smaller and potentially less varied
sample of data each year.

Figure 3:

800000 -

700000 -

600000 -

IS 5
S =}
S S
S S
S S
5 5]

Num of Reviews

300000 -

200000 -

100000 A

04
0 1 2 3
Rating Scale

Figure 4:

Before starting to create a model, we
wanted to gain an overview of the
“positive” reviews and the “negative”
reviews. We did this by creating 2 sets of
word clouds. The first approach
categorized reviews as positive or

negative based on the rating (3 or higher
for positive, and 2 or lower for negative).

The second approach for categorizing
positive vs negative reviews was based on
the actual content of the review itself,
using sentiment analysis. For this, we
applied TextBlob to calculate the
sentiment polarity of each review, which
assigns a score to the text indicating
whether the sentiment is positive,
negative, or neutral. Based on the polarity
score, we classified the reviews as positive
(if the score was greater than 0), negative
(if the score was less than 0), or neutral (if
the score was exactly 0). This allowed us
to classify the reviews independently of
their ratings. Unfortunately, neither set of
word clouds (Figure 5 and 6) provided a
deeper insight into the reviews.

Figure 5:

Word Cloud for Positive Reviews

R R

e tHoﬁghtOne

Word Cloud for Negative Reviews
trytfle

very £00d % i
gnextmtlme

easy didn't_have =
turned outV a SMM f!%?ﬁ”d

did®not

Figure 6:

Word Cloud
turned-outiee

h%d”sha

oneMy

1.2 Recipe Dataset

The recipe dataset from RAW_recipes.csv
contains 231,637 data entries spanning a
19-year period (1999 — 2018) from 27,926
distinct users.

Each data entry included the following
columns: name, id, minutes,

contributor_id, submitted, tags, nutrition,
n_steps, steps, description, ingredients,
and n_ingredients. For a list of column
descriptions please refer to Table 2 below.

Recipe Dataset
Column Name Description
name Name of recipe given by contributor
id Unique id of recipe
minutes Duration to make recipe

contributer_id Unique if of user who submitted recipe

submitted Date recipe submitted (YYYY-MM-DD)
tags Food.com tags for recipe
Nutrition information (calories (#), total
nutrition fat (PDV), sugar (PDV), sodium (PDV) ,
protein (PDV) , saturated fat
n_steps Number of steps in recipe
steps Text of recipe instructions
description Description of recipe

ingredients List of ingredients

n_ingredients Number of ingredients in recipe

Total Entries: 231,637

Years of data collection : 1999 - 2018

Most recipe entries have an average of 8

ingredients, with the maximum number of

ingredients recorded at 20 (Figure 7). The
wide range of ingredient counts suggests a
mix of simple and more intricate recipes.

Figure 7:

Distribution of Number of Ingredients per Recipe

20000

15000

Frequency

10000

5000

0.0 25 5.0 75 10.0 125 15.0 17.5 200
Number of Ingredients

Figure 8:

Histogram of Recipes by Tag

200000

150000

100000

Number of Recipes.

50000

o

The “tags” column had 209,115 unique
tags. Figure 8, shows the top 20 tags
across the recipe dataset. We then
performed a brief thematic analysis and
placed the top 20 tags in the following
categories: Time-related, Course, Dietary,
Cuisine-related, Difficulty/Convenience,
and Occasion-related. A breakdown of
these categories can be found in Table 3
below.

Categories for Top 20 Tags

Categories Tags

Preparation

Time to make
60 min or less
30 min or less
4 hours or less
3 steps or less

Time-related

Course
Meal-related Main dish
Num of servings

Main ingredient
Ingredient-related Meat
Vegetables

Dietary

Dietary Low in something

Easy

Difficulty/Convenience e

Occasion

Occasion-related
Taste mood

Cuisine

Cuisine-related North American

2 Predictive Task

The task we have selected for our
assignment is to predict the rating that a

user will give for a recipe, on a scale of
zero to five.

2.1 Features

To properly predict how any given user
would rate a recipe, a series of features
has been extracted and created from the
given dataset; namely the user_id,
recipe_id, and rating fields. To properly
use these features to train and evaluate
our model, we performed a simple
80%/10%/10% split for our
train/validation/test datasets and utilized
them for both our baseline models and our
main models.

2.2 Evaluation Methodology

To properly evaluate how well our model’s
predictions perform compared to their
respective true rating, we will calculate
the Mean Squared Error (MSE), which is
defined below:

—~ 2

n
=L _
MSE = nz ¥, —-Y)

where Yi is the true rating value and Yi is

the estimated rating value.

Our exploratory data analysis showed
that both the average rating users give
and the average rating a recipe receives
give a reasonable approximation for
predicting future rating values. Based on
this fact, we defined three simple baseline
models to get a sense of the room for
further improvement.

2.3 Baselines
User-Average Model

The user-average model predicts ratings
based on the user's past behavior. It first

checks if the user has a history of
providing ratings by looking up the user
in the dictionary of user averages
previously constructed. If the user is
found, it returns the average rating that
this user typically gives to items. This
approach assumes that users tend to be
consistent in their ratings, so their
average rating can be a good predictor of
their future behavior. However, if the user
1s new or unknown (i.e., not found in the
user dictionary), the model defaults to
using the global average, which is the
average rating across all users and all
items. This fallback ensures that the
model can still make a reasonable
prediction even when there is no specific
data about the user.

Item-Average Model

The item-average model works similarly
but focuses on the item instead of the
user. It looks at the average rating for the
specific recipe or item being predicted. If
the item has been rated by users before,
the model returns the average rating for
that item, assuming that its average
rating reflects its overall quality.
However, if the item is unknown or hasn’t
been rated before, the model defaults to
the global average. This method is useful
when items have distinct patterns of
ratings but can be less effective if there
isn’t enough information on a particular
item.

Jaccard Similarity Model

The Jaccard Similarity model takes a
more nuanced approach by incorporating
the idea of similarity between items,
using a metric called the Jaccard
similarity. The formula is given as follows:

X (R j—ﬁj)]accard(i,j)

jelu u,

r(u, l) = Ri + zjeljaccard(i.j)

This model first looks at other items that
the user has rated and calculates how
similar those items are to the item in
question based on the overlap of users
who rated both items. The ratings of these
similar items are adjusted (weighted) by
their similarity to the target item. If the
weighted sum of these ratings can be
computed, the model predicts the rating
based on this information. However, if the
user hasn’t rated any similar items (i.e.,
there’s no overlap in users who rated both
items), the model defaults to the global
average. This method allows for more
personalized predictions by factoring in
how similar the user's previous items are
to the new ones.

2.4 Performance Evaluation

Model MSE
User-Average 1.3087376
Item-Average 1.4270654

Jaccard Similarity | 1.4209063

After evaluating our baseline models, we
found the MSE values for each baseline
model to be well over 1.3. To see if we
could further improve the accuracy of our
prediction, we developed and evaluated a
User/Item Average Hybrid Model, a
Latent Factor Model, and a Neural
Network-based Model, which we explore
in the next section.

3 Model

User/Item Average Hybrid Model

The very first approach we tried was
combining the user rating average and
recipe rating average with weight factors.
Through a hyperparameter tuning process
of weight values, we achieved an MSE
value of 1.29767. Although the result was
an improvement from the baseline
models, it was quite insignificant, so we
delved further into more complex models.

Latent Factor Model

Each user-recipe interaction is
represented with (1) global bias; (2) user
bias; (3) item bias; (4) latent factors for

item and user.

Justification

The Latent Factor Model is simplistic and
effective, particularly with sparse data
that only contains user-recipe
interactions. The Latent Factor Model
performs well without requiring us to
parse and provide explicit features from
raw data files which can be quite
challenging. It is great at personalizing
predictions by learning patterns solely
from user-recipe interactions, using latent
factors to capture preferences and
characteristics. Additionally, our
familiarity with the Latent Factor Model
from class made it a natural choice. We
have seen that this method performs well
on the type of problem we are solving.

Optimization

The optimization is performed using the
L-BFGS-B algorithm, which minimizes
the loss function:

Cost = MSE(predictions, labels) +
Regularization Terms

We have added regularization terms for
user and item biases and latent factors to
prevent the model from overfitting and
ensure decent generalization to unseen
data.

Then we performed a grid search to find
the combination of regularization terms
that would decrease the validation error
of our model.

Issues:

We have run into issues with the train,
validation and test sets that were already
provided with the data set. These sets
were organized in a way that the newest
user review would go into test, second
newest to validation, and the rest of the
reviews under that user - to training[1].
We learned from the data analysis that
the majority of users only have 1 review.
This means that there isn’t a lot of
overlap between the training set and
validation or test sets. This led to the
model defaulting to a certain baseline,
that would predict the same rating no
matter how we changed the parameters.
This resulted in an MSE of 1.92. We
managed to solve this issue by reshuffling
the given datasets and performing our
own splitting. This introduced overlap
which made the model perform a lot
better, achieving an MSE of 0.90. This
reshuffling approach was also useful for
us when experimenting with other
models, including the Neural Network
Model.

In addition to this, after we tuned the
parameters, we wanted to find paths to
further improve our model. We started to
think of ways how we could use extra
features from raw data to our advantage.
We reviewed the paper "Improving Latent
Factor Models via Personalized Feature
Projection for One-Class
Recommendation" [9], which discusses an
approach to expand traditional latent
factor models by incorporating
user-specific personalized projection
matrices for item features, rather than
using generalized latent factors. This
approach appeared promising, as it would
allow us to model more complex,
user-specific relationships with the item
features. However, due to time constraints
and the challenges involved, we decided to
explore other models that would allow us
to use raw data features.

Neural Network Model

The final approach we attempted is a
neural network that takes in various
features as inputs and predicts a single
rating as output. In total, we attempted
two different models, one with some basic
features, and another with more advanced
features. The architecture for both models
is similar. Model 1 has an input layer, a
dense layer with 128 neurons with relu
activation and 0.5 dropouts, a dense layer
with 64 neurons with relu activation and
0.5 dropouts, and finally a single output
layer. Model 2 uses the same architecture
but with an extra 64 neuron Dense layer.

We wanted to try using a neural network
to better capture some of the more
complex relationships between the
features that we have to work with.

The following is a description of the
features that we used:

Number of Steps (Both Model 1 and 2)
We took the similarity between the
number of steps that the user prefers (this
1s the average # of steps in ratings the
user rated 4 or higher in the training
data) and the number of steps in the
recipe as a feature.

We used the normalized similarity
measure below:

def normalized_similarity(x, y):
denominator = max(abs(x), abs(y), 1)
return 1 - abs(x - y) / denominator

Number of Ingredients (1 and 2)

We used the same method as above to use
the similarity in the number of
ingredients in user preferences and the
recipe.

Jaccard Similarity (1 only)

We used the maximum of the Jaccard
similarities between recipes that the user
has rated and the recipes that the users of
the target recipes have rated as a factor.

Technique Vector (1 and 2)

One part of the dataset is a list of
techniques found within recipes. We use
the normalized version of the vector that
represents the techniques the user has
encountered.

Calorie Level (2 only)
We use the normalized calorie level of the

recipe as a feature.

Ingredients Jaccard (2 only)

We take the Jaccard similarity of the
ingredients in the recipe and the set of
preferred ingredients of the user (set of all
ingredients in recipes the user rated 4 or
higher) as a feature.

Ingredients TFIDF (2 only)

We run the following TFIDF function on
the list of ingredients that the user
prefers, and use the TFIDF of that
ingredient as a feature:

for ingredient in target_user| favorite_ingredients'|.keys():

tf = target_user| ' favorite_ingredients'|[ingredient| / len(target_user|'favorite_ingredients'].keys())

idf = math.log(len(PP_recipes_list) / ingr_id_to_count|ingredient| + 1)
ingredients_tfidf = max[tf+idf, ingredients,)\

Evaluation Results
The first model yielded an MSE of 0.88.
The second model yielded an MSE of 0.79.

These results, while good, are not a
significant improvement over previous
methods, in particular compared to the
LFM. This combined with the low
improvement in loss after each epoch
suggests that, at least for the features
that we used, creating a full-fledged
neural network may not be an efficient
use of computation power for this task.

The two main challenges of using neural
networks were dealing with the
computational requirement and selecting
effective features. My laptop couldn’t
handle training a neural network locally,
so I had to import my code onto Kaggle
and use their GPU resources.

The long runtime it takes to generate the
features and train the network meant
that it was difficult to tune
hyperparameters and experiment with
features and model architectures.

Selecting the correct features to maximize
performance was also a challenge, as
some features that intuitively seemed like
they would be good were a detriment. For
example, the Jaccard similarity didn’t
improve the model that much after
experimentation, and was scrapped in the
second model. Also, a version of the
technique vector that took into account
which techniques the recipe had increased
the loss, so the simpler version that only
included user techniques was used.

4 Literature Review

Between 2006 and 2023, 70 research
papers have focused on food
recommendation systems. The main
objectives of these studies include
improving users' health by providing
nutritional information, enhancing the
quality of datasets and recommender
system research, and generating
personalized recommendations based on
factors such as preferred cuisine,
ingredients, and available cooking time
due to users' careers [7].

In food recommendation systems, the
three most common filtering techniques
are Content-Based Filtering (CBF),
Hybrid Filtering (HF), and Collaborative
Filtering (CF) [7].

Recent methods for personalizing
food-related data often use an
encoder-decoder framework, where data is
tokenized to allow the machine to process
and expand it. Aspect-aware learning is
then employed to extract latent
representations from users' past reviews,
such as preferred cooking methods, food

types, or motivations for trying a recipe.
This enables the model to infer user
preferences. The attention fusion layer
further highlights specific review details,
such as cooking techniques, that are
crucial for generating personalized
recommendations. [1][2]

Other approaches leverage neural
networks to learn latent representations
of user preferences and item features
[3][4][5]. Some methods have also
combined Collaborative Filtering with
Generative Concatenative Networks [6].

4.1 Context of Dataset Used

We used the dataset collected by
Majumder et al. from Food.com. For more
details on the dataset's properties, please
refer to Section 1, "Exploratory Analysis."

In their study, Majumder et al. developed
a model to generate personalized recipes
based on a dish name, the desired calorie
level, and a partial list of ingredients.
This approach is more realistic, as users
often only know a few core ingredients.
The personalized framework also
incorporates the user's most recent recipe
interactions (reviews) and preferred
cooking techniques, such as boiling,
grilling, baking, or mixing. The model’s
goal is to generate a coherent,
personalized recipe.

This approach differs from previous
studies, which typically provide models
with a full list of ingredients and the dish
name, without any personalized
framework. In contrast, prior recipe
generation models are evaluated based on
how well they use the full ingredient list

and the coherence of the generated recipe.
While Majumder et al.'s study also
evaluates coherence, they take it a step
further by assessing whether the
personalized framework enhances the
"semantic plausibility"—the believability
and accuracy—of the generated recipes.

4.2 Food Datasets in Prior Studies
According to the literature review by
Mahajan et al., of the 70 papers reviewed,
20 used datasets that are not publicly
available due to privacy concerns or terms
of service restrictions. As a result,
researchers often have to collect their own
food review datasets [7]. This is evident in
our case, as the dataset we used was
manually collected by Majumder et al.'s
research team.

The 2024 paper, “An interactive food
recommendation system using
reinforcement learning” [8] also utilized a
dataset from Food.com, which they
discovered via the publicly available
Kaggle site. This is the same platform we
found the dataset we are working with.

5 Conclusions

In conclusion, in this report we explored
two datasets from Food.com, focusing on
user-recipe interactions and recipe
details. Through an extensive exploratory
data analysis, we uncovered key
characteristics of user behavior and recipe
features, such as the predominance of
single-review users and the decline in new
recipe reviews after 2010. Our predictive
task involved building and evaluating
several models to predict user ratings of
recipes, starting with baseline models like

user-average, item-average, and Jaccard
similarity-based predictions. These
baseline models provided foundational
insights but left room for improvement, as
indicated by their Mean Squared Error
(MSE) scores.

To improve accuracy, we developed more
sophisticated models, including a
User/Item Average Hybrid Model, a
Latent Factor Model (LFM), and a Neural
Network-based model.

The LFM, with an MSE of 0.90, effectively
modeled sparse data using global, user,
and item biases alongside latent factors,
revealing user preferences and recipe
characteristics without extensive feature
engineering. Regularization ensured
generalization and avoided overfitting.

The Neural Network, leveraging complex
features like steps, ingredient similarities,
and calorie levels, achieved the best MSE
of 0.79 but showed marginal improvement
over the LFM. High computational costs
and limited gains suggest neural
networks may not be optimal for this task.
While the LFM offered simplicity and
interpretability, the neural network’s
non-linear features made its outputs less
transparent, emphasizing the importance
of feature selection, efficiency in model
design and the challenges of incorporating
complex features into food
recommendation systems

Our review of related literature revealed
similar findings in other studies,
particularly in the growing use of neural
networks and collaborative filtering for
personalized food recommendations.

These findings affirm the broader
research trends, emphasizing the
importance of leveraging user preferences
and recipe characteristics to enhance
recommendation accuracy. Overall, our
analysis demonstrated the strengths and
limitations of various approaches to food
recommendation tasks, paving the way for
future advancements in personalized
recipe generation and recommendation
systems.

6 References

[1] Majumder, Bodhisattwa Prasad, et al.
"Generating personalized recipes from

historical user preferences." arXiv preprint
arXiv:1909.00105 (2019).

[2] Ni, Jianmo, and Julian McAuley.
"Personalized review generation by
expanding phrases and attending on
aspect-aware representations." Proceedings
of the 56th Annual Meeting of the
Association for Computational Linguistics
(Volume 2: Short Papers). 2018.

[3] Wu, Chao-Yuan, et al. "Joint training of
ratings and reviews with recurrent
recommender networks." (2017).

[4] Catherine, Rose, and William Cohen.
"Transnets: Learning to transform for
recommendation." Proceedings of the
eleventh ACM conference on recommender
systems. 2017.

[5] Li, Piji1, et al. "Neural rating regression
with abstractive tips generation for
recommendation." Proceedings of the 40th
International ACM SIGIR conference on
Research and Development in Information
Retrieval. 2017.

[6] Lipton, Zachary C., Sharad Vikram, and
Julian McAuley. "Capturing meaning in
product reviews with character-level
generative text models." arXiv preprint
arXiv:1511.03683 (2015).

[7] Mahajan, Pratibha, and Pankaj Deep
Kaur. "A Systematic Literature Review of
Food Recommender Systems." SN Computer
Science 5.1 (2024): 174.

[8] Liu, Liangliang, et al. "An interactive
food recommendation system using
reinforcement learning." Expert Systems
with Applications (2024): 124313.

[9] Zhao, Tong, Julian McAuley, and Irwin
King. "Improving latent factor models via
personalized feature projection for one class
recommendation." Proceedings of the 24th
ACM international on conference on
information and knowledge management.
2015.

