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1 Introduction1

We aim to address the problem of forgetfulness with LLMs due to their short-term memory and/or2

inadequate retrieval ability in the context of using LLMs as a medium for storytelling. In particular,3

we aim to create a framework that allows a LLM to remember both specific data points such as a4

character’s stats, items in an inventory, and money, as well as general and abstract knowledge such as5

character relationships and world history.6

We chose this task because it tackles a prominent limitation seen in LLMs: their limited memory7

over a long time period. This task is particularly interesting because it requires us to think about how8

long-term memory works with humans. Furthermore, coming up with retrieval mechanisms tailored9

to the specific task of maintaining world state for storytelling is an intellectually interesting endeavor.10

The primary impact of this project is that it would allow for interactions with LLMs that engage with11

a much larger window of user-input. Storytelling, as is the focus of our project, is one example of12

this, as our project would theoretically enable LLMs to create narratives based on long histories and13

rich world-building.14

We created a model which consists of a RAG pipeline for context storage, an open source Llama15

model for story facts decomposition, and a core OpenAI model for story generation. We have found16

that this structure of us integrating a database as model’s memory lead to a better, more coherent,17

story generation.18

2 Background19

Zhiheng Lyu et. al. proposed a framework for tracking the state of a world in a story telling setting by20

decomposing events into atomic facts. We used this framework as inspiration for the decomposition21

step in our model.22

The "Automatic Story Generation: Challenges and Attempts" paper that went over different ap-23

proaches directed at improving story generation inspired the iterative story generated approach in our24

model.25

3 Method26

Our current method involves using a simple pre-trained core-model for story generation with a27

retrieval database. We generate story iteratively, allowing for user input to progress the story. The28

generated portion of the story is decomposed into facts by an open-source Llama model. Each29

iteration we store facts about the plot in the RAG pipeline. These facts are then used as a part of a30

prompt for the next iteration in order.31

Currently, our framework consists of a vectorstore retrieval database powered by FAISS, and a32

core-model powered by GPT 4o. We use Llama-7B to decompose story plot points into a list of facts,33

which we then store in the vectorstore database.34



This model leverages the retrieval database’s ability to store the details of the story in the form of35

vector embeddings of the facts generated by the model. Hence, it is able to remember the facts even36

after multiple iterations. However, one of its weaknesses is in remembering quantitative data which37

we tried to address by better prompt engineering.38

4 Experiments39

Experiments done40

• Generated a few short stories with different pre-trained models to see how they perform. We41

investigated three models: Gemma-7b, Llama-7b, Mistral-7b. We currently choose Llama42

because it suited our needs the best out of the three, in our subjective human perspective,43

in generating stories and decomposing facts in those stories. In addition, we used the gpt44

4o OpenAI model as a main model to continue the stories based on user interaction as this45

model is considered one of the best.46

• We created a prompt to pass into a model with a story to decompose it into facts, and tried it47

on a story to see the decomposition.48

• We created code for continuous story generation: After a portion of a story is generated,49

we let the user input an action to take and use that action as input to the model to continue50

generation.51

• We started integrating a database: stored decomposed facts, and passed them in with user52

prompt to generate continuation of the story to improve retention of facts in previous parts53

of the story.54

• Since we were noticing that the model is unable to remember the quantitative data from the55

stories well, we decided to address this issue by prompt engineering. We tried re-wording the56

prompt for decomposition so that the embeddings stored in the database are more meaningful57

and can help with the retention of the facts. We also added a new category for ’Quantitative58

Facts’ instead of just having ’Pre’, ’Static’, and ’Post’ as decomposed facts.59

• Not only did we experiment with the decomposition prompt, we also experimented with60

better prompt engineering for retention-related questions where we asked more explicit61

questions for quantitative data.62

63

Hence, the main purpose of our experiments is seeing how well a model retains the details provided64

to it in multiple iterations. We look out for two things - 1) whether the model is able to integrate65

the user input to move the story forward and 2) if the model is able to keep track of everything and66

remembers the details of the story across the multiple iterations.67

Furthermore, the results for the experiments will be discussed under Results section.68

69

Metrics and Experimental Setup70

The experimental setup that we used is as follows:71

• Generate a story premise that allows for user interaction72

• Run with different number of iterations of the user progressing the story (tried 5, 10 and 20)73

• Ask the model if it remembers a fact from the first iteration or correctly keeps track of the74

changes happening especially with respect to quantitative data75

Our first input is we choose the beginning of a short story to provide premise to the Llama model and76

continue it to an arbitrary point but end it at a point which leaves scope for user interaction. Then77

our additional inputs are in the form of user input in every iteration for moving the story forward78

(provided to the core model - GPT4o). Additionally, we ask the model a question related to the story.79

The final output is the response to the retention-related question.80

The intermediate steps include decomposing the facts (using Llama) based on the user input and81

updating the database in every iteration.82

83
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The metric which we use for the model involves doing human evaluation on the response. Since, we84

are acting as user, we can evaluate whether the model’s response is consistent with what we input in85

the iterations.86

For example, we asked the model to generate a story premise based on the fairy-tale called Kolobok,87

which tells a story of a sentient bread-like being that runs away from the house it was made in. In88

the premise, Kolobok encounters many different characters-animals and scenarios on its way which89

allows for a good set up to let user decide the course of action.90

We fed this premise into our core model with a database as well as into default Llama-7B, continued91

the story 10 times with the user input, and then asked each model which animal Kolobok encountered92

first. Our model correctly answered the question, while default Llama-7B incorrectly answered with93

the wrong animal.94

This rudimentary experiment shows that the addition of a database and using RAG system does allow95

LLMs to remember farther back in time.96

4.1 Model97

Our model is as follows:98

We use Llama-7B for the decomposition of each story into discrete facts, and use ChatGPT-4o for the99

continuous generation of the story via retrieved facts.100

FAISS was used for storage and retrieval for the vector store database.101

4.2 Datasets102

We are using the TinyStories (https://www.kaggle.com/datasets/thedevastator/103

tinystories-narrative-classification) dataset to increase the diversity of our language104

model’s outputs. This dataset consists of a large collection of short stories. Users can either create105

their own story context or use a story from the dataset as a starting point. In particular, the option to106

randomly select a story from this extensive dataset allows our model to generate narratives based107

on a wide range of contexts, making our application more dynamic and engaging. Additionally, it108

enables us to evaluate our story generation model, as well as our story facts storage and retrieval109

system, across a broad variety of scenarios.110

4.3 Baseline111

We use the default LLaMA-7B model as our baseline. Our goal is to compare the performance of112

our model against this standard open-source model to evaluate the effectiveness of our additions,113

design changes, and methods. This comparison allows us to assess whether our approach leads to114

improvements on the target task. We compared performance of our model with the default one in115

two aspects: how effective it is at remembering facts and how coherent the generated story across116

multiple user prompts is.117

4.4 Code118

Here we provide the link to the code for the model which we came up with. We use Llama to provide119

us a start to the story based on a sample input and generate it to a point where a user can progress it120

further. We decompose this output into facts, convert it into vector embeddings and store it in our121

RAG pipeline. Then we do multiple iterations of user input, each time generating continuation of the122

story with OpenAI gpt 4o and updating the database.123

124

URL:125

https://colab.research.google.com/drive/1QCir-t6XSfEYY3UhHajibtzWWxr6U07_126

?usp=sharing127

The references for the LLAMA model and retrieval model are cited in the References section128
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5 Results129

We compared the story generated by our model and default Llama’s output for the same prompt and130

saw that the story generated by our model takes the context into account better than Llama because131

we provide facts of the story generated so far as context to the RAG pipeline. Since a normal model132

like Llama does not leverage RAG to continuously store the information being generated in each133

iteration, its story is not as coherent as the one generated by our model. Moreover, it is unable to134

remember all the details provided, due to the lack of structure in input.135

Experiment Story Charac-
ter

Model Used
For Decompo-
sition

Result Code link

Decomposition Prompt modi-
fied

Monip, the
Transformer

Llama Correctly remembers the result Link1

Decomposition Prompt modi-
fied

Kolobok Llama Does not consistently remember the
quantitative data

Link2

Decomposition Prompt modi-
fied + Added action of Monip
collecting 20 cubes

Monip, the
Transformer

Llama Remembers the quantity but failed to
take into account the action of collecting
cubes

Link3

Decomposition Prompt modi-
fied + Added action of Monip
collecting 20 cubes

Monip, the
Transformer

GPT 3.5 turbo Incorrectly remembers the quantitative
data

Link4

Action of Monip collecting
cubes 20 times + explicitly ask
for quantities + rework context
to not add actions into database

Monip, the
Transformer

GPT 3.5 turbo Could not keep track of the changes in
the quantity of cubes collected

Link5

Retrieve information using the
model from the input, then
prompt explicitly for quantities
+ rework context to not add ac-
tions into database + add story
context into database directly

Mateo GPT 3.5 turbo Unable to recognize change in quantita-
tive variable by taking context into ac-
count

Link6

Table 1: Experiment results for different models and prompts related to quantitative data

An example generation of our model is below:136

137

• We prompt the user on which fictional-story world they want to use.138

139

To create your own story, put 0 To use a specific story from the140

dataset, put 1 To use a random story from the dataset, put 2 What141

would you like to do?2 Write a fantasy story that is based on the142

following plot points, and leave off/stop generating at a point143

where story is unfinished: Once upon a time, there was a little144

girl named Lily. She loved to draw and color with her crayons. One145

day, Lily wanted to make a special picture for her mommy. She got146

out her paper and crayons and started to draw. #story continues ...147

#prompting the user148

Now it’s your turn to continue the story. What happens next to Lily149

and her love of spreading honey on her pictures?150

151

• Then we decompose the story in the form of facts152

153

Deconstruct the event point into atomic facts:154

Pre-facts:155

1. Lily loves honey.156

2. Lily’s mommy loves honey on her picture.157

3. Lily has a special technique for spreading honey on pictures.158
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4. Lily invites friends over for art parties.159

5. Lily teaches her friends how to spread honey on their pictures.160

Post-facts:161

1. Lily became known as the "Honey Artist" in her town.162

2. People came from far and wide to see Lily’s honey-spread163

masterpieces.164

3. Lily’s love for spreading honey on her pictures turned into a165

magical gift.166

4. Lily’s gift brought joy to everyone who saw it.167

Static facts:168

1. Lily continues to spread her love and honey wherever she goes.169

2. Lily’s love for honey remains unchanged.170

171

• For a fixed number of iterations, we take input from the user, decompose it into facts and172

update the database. This is what the story generated by the model looks like:173

174

Lily grows up and becomes a famous honey artist Lily’s love for175

spreading honey on her pictures never faded as she grew up. She176

continued to use honey in her artwork and eventually gained177

recognition for her unique style. Her artwork was displayed in178

galleries all over the world and she became known as the "Honey179

Artist." People came from far and wide to see her creations and180

taste the honey that she used in her paintings. Lily was happy to181

share her love for honey with the world and her love for art and182

honey only grew stronger with each passing day.183

184

New document added and FAISS index saved.185

186

Lily used her fame to become a bee conservationist After becoming187

a bee conservationist, Lily’s passion for spreading honey on her188

pictures turned into a passion for protecting and preserving bees.189

She started giving presentations at schools and community events190

about the importance of bees and how to create bee-friendly habitats.191

Her efforts gained recognition and she became a well-known advocate192

for bee conservation. Eventually, Lily’s work helped to save193

many bee populations and she was known as the "Bee Hero" in her194

community.195

196

New document added and FAISS index saved.197

...we do this for multiple iterations198

• At the end, we ask the model question related to the story and see how well it retains the199

details.200

For example, we prompt:201

"Given everything that has happened, can you write an epilogue for202

the story?"203

204

We get the following result:205

Epilogue:206

207

Years went by and Lily’s love for drawing and coloring continued208

to grow. She always remembered how special her mommy made her feel209

when she used honey on her pictures. It became a tradition for Lily210

to add a touch of honey to all of her artwork, [...]211

212

[...] Her unique use of honey in her artwork caught the attention213

of her professors and she was praised for her creativity and skill.214

215

Lily’s love for spreading honey on her pictures never faded, [...]216
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217

But no matter how famous she became, Lily never forgot the simple218

joy of sharing her love and creativity with her loved ones through219

her honey-spread pictures. And she always remembered the sweet220

moment when she first discovered the magic of honey on her drawings.221

Hence, we can observe that the model is able to remember the qualitative details well but fails to222

recognize when a quantitative variable changes (referring to the table). We tried two methods - 1)223

look through relevant information in vectorstore, and update and 2) Use separate mechanisms for224

story generation and retrieval of items225

One issue we discovered is that the vectorstore would recognize actions as permanent facts in our226

world state, and as a result would keep trying to make the main character perform those actions. For227

example, the vectorstore would remember that “Monip is getting 3 energon cubes from storage”,228

and constantly keep trying to make the main character grab 3 cubes from storage. The solution229

we attempted to was to be selective about what we let into the vector store. This showed some230

improvement but the LLM still struggles to remember quantitative changes accurately. However, the231

vector database and storage of facts helps the model to keep track of the storyline.232

6 Discussion233

We believe that our findings may be applicable to other areas such as tutoring, where an LLM234

would need to remember large amounts of information relating to a student’s progress, and healthcare235

assistance, where an LLM would need to remember large amounts of information regarding a patient’s236

past illnesses, symptoms, activity, and care received. There could be other potential areas where such237

model structure could be useful.238

7 Conclusion239

By comparing the output of our model (which consists of a RAG pipeline built on top of OpenAI240

and the input is provided in the form of decomposed facts through LLAMA) with general LLAMA241

in continuous story generation, we can conclude that the decomposition of input into facts242

and use of a RAG pipeline to store those facts improves the quality of a generated story. The243

RAG pipeline helps the model to remember more context. This retention of the story outline244

shows that better prompts and structure lead to more coherent results in the process of story generation.245

246

By using the metric of how well a model remembers all the details and human evaluation of the247

generated stories, we can also conclude that the form of input we provide to the model can deeply248

impact its result, as seen by the better results due to decomposition. However, we can do more249

experiments (e.g with structure of our database), develop more robust metrics for comparing the250

generated stories and further improving our model. We would also like to look into creating an actual251

user-facing application where people can generate unique stories, since our ultimate goal is to create252

a real-world product that makes a positive impact in people’s lives.253
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